平 成 29 年 度

問題 WITJ	教	科	科	目	ページ数
	理	科			10

試験開始の合図があるまで，問題冊子を開かないこと。

解答の書き方

1．解答は，すべて別紙解答用紙の所定欄に，はつきりと記入すること。
2．解答を訂正する場合は，きれいに消してから記入すること。
3．解答用紙には，解答と選択した選択問題の番号，志望学部及び受験番号のほか はいつさい記入しないこと。
4．問題〔I 〕，〔II），〔III），（V），〔V）は選択問題である。 5 つのうち 4 つを解答 すること。 5 問すべてを解答してはいけない。選択問題〔I〕，〔II〕，〔III〕，〔IV〕，〔V〕のうち，選択した問題の番号を解答用紙（その1）の所定の枠内に記入 すること。

注 意 事 項
1．試験開始の合図の後， 5 枚すべての解答用紙に志望学部及び受験番号を必ず書 くこと。
2．選択科目は，願書に記載したものと違ったものについて答えてはいけない。
3．下書き用紙は，片面だけ使用すること。
4．問題の内容についての質問には，いつさい応じないが，その他の用事があると きは，だまって手をあげて，監督者の指示を受けること。
5．試験終了時には，解答用紙を机上の右側に置くこと。
6．試験終了後，問題冊子および下書き用紙は持ち帰ること。

〔I〕図1－1のように，水平面に対して傾角 θ_{1} で平板が設置されており，その平板上に質量 m の物体 A が静止している。平板と物体 A の間の静止摩摖係数を μ ，動摩擦係数を μ^{\prime} ，重力加速度の大きさを g として以下の問いに答えよ。

図1－1
（1）物体Aと平板の間に働く摩擦力の大きさを求めよ。
（2）平板の傾きを徐々に大きくしていつたところ，物体Aが滑り下り始める直前の水平面に対する傾角は $\theta_{0}\left(\theta_{0} \geqq \theta_{1}\right)$ であった。 μ を θ_{0} を用いて表せ。
（3）平板の傾角を $\theta_{2}\left(\theta_{2}>\theta_{0}\right)$ とすると，物体 A は静かに滑り下り始めた。この ときの物体 A の加速度の大きさ，および平板に沿って距離 x 滑り下りた時点 での速さを求めよ。

図1－2のように，なめらかに回る滑車を平板に取り付け，質量 m の物体 Bを物体Aと糸で結び，滑車にかけた。水平面に対する平板の傾角は $\theta\left(\theta<90^{\circ}\right)$ で ある。糸は十分やわらかく，その質量を無視できるものとして，以下の問いに答 えよ。

図1－2
-1 －
（4）物体 A と物体 B が静止するための μ の条件を求めよ。
（5）物体 A と物体 B が静止しない場合，物体 A と物体 B の加速度の大きさ，お よび糸の張力の大きさを求めよ。
（6）物体 A の上に質量 m の物体 Cを積み重ねて固定するとき，物体 A が平板を滑り下りるための μ の条件を求めよ。

〔II〕一様かつ時間的に変化しない磁束密度 $B 〔 T 〕$ の鉛直上向きの磁場内に，抵抗 の無視できる 2 本で一組の平行な金属レールを水平面に置いた。 2 本の金属レー ルの間隔は $l[\mathrm{~m}]$ である。金属レールの中央に抵抗の無視できる長さ $l[\mathrm{~m}]$ ，質量 $m(\mathrm{~kg})$ の円柱形の金属棒が置かれている。金属棒は金属レール上を摩擦なく運動 することができ， 2 本の金属レールから脱落することはない。金属レールの右端 には導線が接続され，$R[\Omega]$ の抵抗と起電力 $E[V]$ の電池，スイッチ $\mathrm{S}_{1}, \mathrm{~S}_{2}$ ，電流計および電圧計が図 2 のようにつながり，金属レールや金属棒を含めた回路を作っている。重力加速度を $g\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ とする。

図 2

スイッチ S_{1} を閉じた後，金属棒を右向きに速さ $v_{0}[\mathrm{~m} / \mathrm{s}]$ で等速運動させた。以下の問いに答えよ。
（1）時間 Δt［s］の間に金属棒が横切る磁束 $\Delta \Phi(\mathrm{Wb})$ を求めよ。
（2）電圧計で測定される電圧 V［ V$]$ を求めよ。
（3）抵抗に流れる電流は右向きか，左向きか答えよ。

次に，スイッチ S_{1} を開き，金属棒を金属レール中央に戻して固定した。金属 レール左端を持ち上げ，金属レールと水平面のなす角 θ とした後，スイッチ S_{2} を閉じ，金属棒の固定を外すと金属棒は静止したままであった。このとき，以下 の問いに答えよ。
（4）角 θ の満たす条件を求めよ。

引き続き，角 θ で金属レールを傾けたままで，素早くスイッチ S_{2} を開き S_{1} を閉じると金属棒は右に動き始め，時間がたつと速さ $v[\mathrm{~m} / \mathrm{s} 〕$ の等速運動となっ
た。このとき，以下の問いに答えよ。
（5）等速運動となった後，時間 $\Delta t[s]$ の間に金属棒が横切る磁束 $\Delta \Phi[\mathrm{Wb}]$ を求
めよ。
（6）等速運動となったとき電流計に表示される電流 $I[A]$ を求めよ。
（7）等速運動の速さ $v[\mathrm{~m} / \mathrm{s}]$ を求めよ。

〔III〕光の干渉について考える。1つのスリット S （単スリット）から出た波長 λ の単色光がごく近接した 2 つのスリット S_{1} ， S_{2}（複スリット）を通過すると，回折し て広がり，スクリーン上に干渉して明暗の縞模様をつくる。Sを有する遮光板，
S_{1}, S_{2} を有する遮光板とスクリーンが図3－1のように互いに平行に置かれてい る。各スリットは，紙面に垂直な方向に細長く，スリット幅は波長に比べて十分 に狭い。また，紙面上に x 軸をとり，スクリーン上の点 P の位置を座標 x で表 す。 x 軸は， $\mathrm{S}_{1}, \mathrm{~S}_{2}$ から等距離の点を原点 O とし，紙面の上向きを正とする。 S_{1} と S_{2} の間の距離を d とする。複スリットを有する遮光板とスクリーンまでの距離を L とし，L は d より十分大きいものとする。スクリーン上の点 P と S_{1} ， S_{2} 間の距離をそれぞれ L_{1}, L_{2} とし， S と S_{1} 間の距離を $L_{S 1}, ~ \mathrm{~S}$ と S_{2} 間の距離を $L_{\mathrm{S} 2}$ とする。

まず，$L_{\mathrm{S} 1}=L_{\mathrm{S} 2}$ となる位置に単スリット S を固定し，空気中 $($ 屈折率 1 ）で実験した場合について考える。

（1）L_{1}, L_{2} の大きさを L, x, d を用いて表わせ。
（2）点 P に到達する 2 つの光の経路差 $L_{1}-L_{2}$ を求めよ。ただし，$|a|$ が 1 より十分小さいとき，$\sqrt{1+a} \fallingdotseq 1+\frac{a}{2}$ とする近似を用いること。
（3）干渉縞の間隔を L, λ, d を用いて表わせ。
［V］図5－1において，金属㥛板Kに光を照射すると，金属の表面から電子が飛び出す。そして，飛び出した電子（光電子）が P に到達すると，光電流として回路 を流れる。
はじめに，極板 K に波長 $\lambda_{1}[\mathrm{~m}]$ の単色光を照射し， K を基準にした P の電位 $V 〔 V]$ を変化させながら回路に流れる電流 $I[A]$ を測定したところ，図5－2の入1 （実線）のグラフを得た。次に，極板 K に照射する波長を $\lambda_{1}[\mathrm{~m}]$ から $\lambda_{2}[\mathrm{~m}]$ に変 えたところ，図5－2の λ_{2}（破線）のグラフを得た。

この現象は，光を波とする古典論ではうまく説明できないが，光を振動数に比例するエネルギーを持った粒子（すなわち光子）の集まりであるとすると，説明で きる。比例定数を $h[\mathrm{~J} \cdot \mathrm{~s}]$ ，光速を $c[\mathrm{~m} / \mathrm{s}]$ ，電子の電気量を $e\{\mathrm{C}]$ とする。
（1）本文中の下線部の現象を何と呼ぶか答えよ。
（2）波長 $\lambda_{1}[m]$ の光子 1 個が持つエネルギー $E_{1}[J]$ はいくらか答えよ。
（3）図 5－2の λ_{1} について，光電子の最大エネルギー〔J〕はいくらが答えよ。

ここで，電子を金属極板 K から飛び出すには仕事が必要であり，その仕事の最小値は金属ごとに決まっており，仕事関数 $W(\mathrm{~J})$ といわれる。以下の問いに答 えよ。
（4）図 5－2の λ_{1} について，仕事関数 $W[J]$ を求めよ。
（5）図5－2の λ_{2} においても，仕事関数 $W[J]$ を求めよ。
（6）（4）と（5）の結果を用いて，$h(\mathrm{~J} \cdot \mathrm{~s} \mathrm{~s}$ を求めよ。

以下の問いにつ はて，$\lambda_{1}=5.0 \times 10^{-7}[\mathrm{~m}), \lambda_{2}=4.0 \times 10^{-7}(\mathrm{~m})$ ， $V_{1}=0.10[\mathrm{~V}], V_{2}=0.70[\mathrm{~V}], c=3.0 \times 10^{8}[\mathrm{~m} / \mathrm{s}], e=1.6 \times 10^{-19}[\mathrm{C}]$ を用 いて答えよ。
（7）$h[\mathrm{~J} \cdot \mathrm{~s}]$ と仕事関数 $W[\mathrm{eV})$ の値をそれぞれ求めよ。なお，単位に注意のこと。
（8）図5－2の λ_{2} について，$\lambda_{2}=4.0 \times 10^{-7}(\mathrm{~m})$ の照射光の毎秒あたりの照射 エネルギーは， $2.4 \times 10^{-3}(\mathrm{~J} / \mathrm{s})$ であるとき，每秒何個の光子が K にあたるこ とを意味するか答えよ。
（9）波長 λ_{1}［m］のままで照射光の光量を増加したとき，図5－2で示した λ_{1}（実線）のグラフはどのように変化するか図示せよ。

続いて，スリットの位置は変えず，複スリットを有した遮光板とスクリーンの間を屈折率 n の液体で満たした場合について考える。
（4）この液体中を通過する光の波長を n, λ を用いて表わせ。
（5）干渉縞の間隔を L, n, λ, d を用いて表わせ。

空気中の状態に戻し，スリットSの位置を図3－2のように移動させた。この とき，$L_{\mathrm{S} 1}-L_{\mathrm{S} 2}=k$ で表される光の経路差が生じ，干渉縞の位置が変化した。

（6）（3）で観察された干渉縞と比較したときの x 軸方向の干渉縞のずれを L, k, d を用いて表わせ。
（7）原点 ○ が暗線となる場合，k が満たす条件を求めよ。

〔IV〕図4のようなサイクル（ $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ ）を行ら熱機関を考える。 $1 \rightarrow 2$ お よび $3 \rightarrow 4$ の変化は断熱過程であり， $2 \rightarrow 3$ と $4 \rightarrow 1$ の変化は定積過程である。状態1，4での体積は $V_{\mathrm{a}}\left[\mathrm{m}^{3}\right]$ ，状態 2,3 での体積は $V_{\mathrm{b}}\left[\mathrm{m}^{3}\right]$ である。内部気体を $n[\mathrm{~mol}]$ の単原子分子理想気体とする。気体定数を $R[\mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})]$ ，定積モ ル比熱を $\frac{3}{2} R[\mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})]$ ，定圧モル比熱を $\frac{5}{2} R[\mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})]$ とし，以下の問いに答えよ。なお図 4 の縦軸は圧力 $p[\mathrm{~Pa}]$ ，横軸は体積 $V\left[\mathrm{~m}^{3}\right]$ である。
（1）過程 $2 \rightarrow 3$ にて気体が吸収する熱を $Q_{+}(\mathrm{J})$ ，過程 $4 \rightarrow 1$ にて気体が放出す る熱を $Q_{-}(\mathrm{J})$ とする。各状態の気体温度 $T_{1}[\mathrm{~K}], T_{2}[\mathrm{~K}], T_{3}[\mathrm{~K}], T_{4}[\mathrm{~K}]$ を用 いて，これらの熱を答えよ。
（2）断熱過程において，ポアソンの法則から圧力 $p(\mathrm{~Pa})$ と体積 $V\left[\mathrm{~m}^{3}\right]$ について，

$$
p V^{r}=\text { 一定 }
$$

となることが知られている。ここで γ は比熱比（定圧モル比熱／定積モル比熱） である。これを用いて，各状態の気体温度の関係を求めると，

$$
\frac{T_{4}}{T_{1}}=\square
$$

となる。空白に入る式を答えよ。
（3）体積比 $V_{\mathrm{a}} / V_{\mathrm{b}}=8$ として，熱機関の効率を求めよ。

図4

理科【物理】問題訂正

訂 正

理科【物理】

問題冊子 5 ページ
〔III〕問題文 9 行目
（誤）Lは d より 十分大きいものとする。
（正）Lは x や d より十分大きいものとする。

