化 学

各問の解答は，解答用紙の指定されたところに記入せよ。必要ならば原子量には， $\mathrm{H}=1.0, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Cu}=64, \mathrm{I}=127$ を用いよ。

第1問

問 1

式（1）は，理想気体の状態方程式に補正を加えた，実在気体に対するファンデル ワールスの状態方程式である。

$$
\begin{equation*}
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \tag{1}
\end{equation*}
$$

ここで P は圧力〔Pa〕，V は体積〔L〕，n は物質量〔mol〕，T は温度〔K〕，R は気体定数 $〔 \mathrm{~Pa} \cdot \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{K}) 〕$ である。また，a および b は，ファンデルワールス定数 と呼ばれる物質に固有な正の定数であり，$\frac{n^{2} a}{V^{2}}$ は分子間引力による圧力への補正を， $-n b$ は分子自身が持つ体積による補正を表す。ネオンやメタンなどの無極性分子は，水分子やアンモニアなどの極性分子と比べ，a の値が $1($（大きい・小さい）。理想気体の状態方程式からのずれを調べるために，式（1）に対し，$n b$ が V より十分小 さいときに妥当な近似を適用して，分子量 $M[\mathrm{~g} / \mathrm{mol} 〕$ を用いて密度 $d[\mathrm{~g} / \mathrm{L}]$ の二次関数として整理すると，式（2）が得られる。

$$
\begin{equation*}
\frac{P V}{n R T}=1+\left(\frac{b}{M}-\frac{a}{M R T}\right) d+\left(\frac{b}{M}\right)^{2} d^{2} \tag{2}
\end{equation*}
$$

ネオンとメタンのファンデルワールス定数を用いて，温度が $25^{\circ} \mathrm{C}$ の場合に，式（2） を d の関数としてプロットすると，図 1 が得られる。密度を $d=100 \mathrm{~g} / \mathrm{L}$ に保ちな がら，温度を上昇させる場合を考える。式（2）から分かるように，メタンの $\frac{P V}{n R T}$ は理想気体 ${ }_{(2)}$（に近づく・から遠ざかる）傾向を示す。同様に，ネオンの $\frac{P V}{n R T}$ は理想気体（3）（に近づく・から遠ざかる）傾向を示す。
（1）下線部（1）～③）の括弧内の語句から，適切なものを選んで記せ。
（2）密度が $d=0 \mathrm{~g} / \mathrm{L}$ から増加する と，ネオンの $\frac{P V}{n R T}$ は単調に増加するが，メタンの場合は一旦減少してから増加する。 $\frac{P V}{n R T}$ が低密度で一旦減少す るための b の条件を，不等式 で記せ。

図1 $\frac{P V}{n R T}$ の密度 d による変化

問 2

BSA（ウシ血清アルブミン）というタンパク質がある。その水溶液の浸透圧を測定し，分子量の決定を試みる。問1 で示したように，実在気体の $\frac{P V}{n R T}$ は，希薄な場合を除き，理想気体の状態方程式からずれた値となる。タンパク質水溶液におい ても，タンパク質自身の体積による寄与やタンパク質間に働く分子間引力などの影響（溶媒からの寄与を含む）により，浸透圧はファントホッフの式からずれた値と なる。

浸透圧の測定は，塩化ナトリウム濃度を $58.5 \mathrm{~g} / \mathrm{L}(1.00 \mathrm{~mol} / \mathrm{L})$ ，温度を $5^{\circ} \mathrm{C}$ に設定し， pH 4.5 と 7.4 の二通りの条件で行った。（1）浸透圧測定で用いた半透膜は，夕 ンパク質以外のすべての溶質を通 む。得られた浸透圧 Π（Pa）を濃度 $d 〔 \mathrm{~g} / \mathrm{L} 〕$ で割って，d の関数と してプロットすると，図2のよう な $\frac{\Pi}{d} 〔 \mathrm{~Pa} /(\mathrm{g} / \mathrm{L}) 〕$ の変化が観測 された。濃度が $d=0 \mathrm{~g} / \mathrm{L}$ に近づく と，いずれの pH でも，ほぼ同じ $\frac{\Pi}{d}$ の値 $36 \mathrm{~Pa} /(\mathrm{g} / \mathrm{L})$ に収束すること が分かった。

図2 BSA水溶液における $\frac{\Pi}{d}$ の濃度 d による変化
（1）下線部（1）について，ファントホッフの式が成り立つと仮定して，浸透圧 Π から分子量を計算する方法として適切なものを，次の ア～ウ の中から一つ選び，記号で記せ。

ア 分子量の計算には，溶液中の全ての溶質の濃度を使う。
1 分子量の計算には，溶液中のタンパク質以外の全ての溶質の濃度を使う。
ウ 分子量の計算には，溶液中のタンパク質の濃度のみを使う。
（2）ファントホッフの式が成り立つと仮定した場合の，濃度が $0 \leqq d \leqq 100 \mathrm{~g} / \mathrm{L}$ の範囲における $\frac{\Pi}{d}$ の変化を，解答用紙のグラフに記せ。
（3）図2から，BSA の分子量を計算し，有効数字 2 桁で記せ。
気体定数は $R=8.31 \times 10^{3} \mathrm{~Pa} \cdot \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{K})$ とする。
（4）次の文章の下線部（2）～（4）の括弧内の語句から，適切なものを選んで記せ。

浸透圧に関しても，問1の式（2）と形式的に同様の補正が導かれる。BSA間に働く分子間引力による補正は，$\frac{\Pi}{d}$ を（2）（増加•減少）させ，BSA 自身の体積による補正は，$\frac{\Pi}{d}$ を（3）（増加•減少）させる。図 2 から分かるように，濃度 $d=24 \mathrm{~g} / \mathrm{L}$ 付近において， pH 4.5 の場合の $\frac{\Pi}{d}$ の値は， pH 7.4 の場合に比べて小さい。これは， pH 4.5 の場合に，BSA 間に働く分子間引力が， pH 7.4 の場合に比べて（1）（強い・弱い）ためである。

第 2 問

（1）水素 H_{2} とヨウ素 I_{2} の混合気体からヨウ化水素 HI の気体が生成する反応は，水素分子 1 mol あたり 9 kJ の反応熱を放出する発熱反応である。この生成反応で は， H_{2} と I_{2} が十分なエネルギーを持って，結合の形成に都合のよい衝突をし，活性化状態が形成されなければならない。活性化状態の形成に必要な最小のエネ ルギーが活性化エネルギーである。この HI が生成する反応の活性化エネルギー は， H_{2} と I_{2} のそれぞれ 1 mol を原子の状態にするための解離エネルギーの和に対し（2）（大きい・等しい・小さい）値を持つ。このことからこの反応は， H_{2} と I_{2} の分子すべてが原子の状態を（3）（経由して・経由せずとも）進行すると考えられ る。一般に，活性化エネルギーの大きい反応ほど反応速度は（（ 大きい・小さい）。 なお，この H_{2} と I_{2} の混合気体から HI が生成する反応は可逆反応である。逆反応では，気体の 2 HI が分解して， H_{2} と I_{2} の気体が生成する。この分解反応の活性化エネルギーは， H_{2} と I_{2} から 2 HI が生成する反応の活性化エネルギーに対し， （5）（大きい・等しい・小さい）値を持つ。

2 HI が H_{2} と I_{2} に分解する反応の反応速度定数 $k 〔 \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{s}) 〕$ を調べたところ，表1に示す結果が得られた。

表1 2HI が H_{2} と I_{2} に分解する反応の反応速度定数

温度 T $〔 \mathrm{~K} 〕$	反応速度定数 k $〔 \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{s}) 〕$	$\frac{1}{T} 〔 1 / \mathrm{K} 〕$	$\log _{\mathrm{e}} k$
645	8.59×10^{-5}	1.55×10^{-3}	-9.36
781	3.88×10^{-2}	1.28×10^{-3}	-3.25

この分解反応の反応速度定数 $k[\mathrm{~L} /(\mathrm{mol} \cdot \mathrm{s})]$ は，活性化エネルギー $E[\mathrm{~J} / \mathrm{mol}]$ ，温度 $T 〔 \mathrm{~K} 〕$ ，気体定数 $R 〔 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}) 〕$ ，ならびに比例定数 A を用いて，次の式 で表される。

$$
k=A e^{-\frac{E}{R T}}
$$

この式を，自然対数に変換して表すと，次の式が得られる。

$$
\log _{\mathrm{e}} k=(\boldsymbol{ア})+\log _{\mathrm{e}} A
$$

この変換した式を利用して， 2 HI が H_{2} と I_{2} に分解する反応の活性化エネルギー $E 〔 \mathrm{~J} / \mathrm{mol} 〕$ を計算すると，その値は（ ィ ）$\times 10^{5} \mathrm{~J} / \mathrm{mol}$ となる。

次に，過酸化水素 $\mathrm{H}_{2} \mathrm{O}_{2}$ が，その水溶液にヨウ化カリウム KIを加えることで，水 $\mathrm{H}_{2} \mathrm{O}$ と酸素 O_{2} に分解する次の反応Aを考える。

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \tag{A}
\end{equation*}
$$

この反応では，次の反応 1 と反応 2 の 2 段階の反応を経て， $\mathrm{H}_{2} \mathrm{O}_{2}$ 水溶液から O_{2} が発生する。

```
\(\left(\right.\) ウ ) \(+\mathrm{I}^{-} \rightarrow(エ)+\mathrm{IO}^{-}\)
(ウ) + (オ) \(\rightarrow\) (エ) + (カ ) \(+\mathrm{I}^{-}\)
```

反応 1 の反応速度は，反応 2 の反応速度に比べ極めて小さい。したがって，反応 A の律速段階は（6）（反応 1 •反応 2 ）である。

この反応Aを， $1 \mathrm{~mol} / \mathrm{L}$ の $\mathrm{H}_{2} \mathrm{O}_{2}$ 水溶液を用いて，温度を一定とした条件で行っ たところ，表2に示す結果が得られた。この結果から，過酸化水素の濃度 $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ が $0.5 \mathrm{~mol} / \mathrm{L}$ となるのは，（ キ）秒後である。

表2 反応Aを温度一定の条件で行った場合の $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ の変化

時間〔s〕	$\left.\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] 〔 \mathrm{~mol} / \mathrm{L}\right\rceil$	$\log _{\mathrm{e}}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
0	1.000	0.00
10	0.914	-0.09
20	0.835	-0.18
120	0.339	-1.08
240	0.115	-2.16

問1 下線部（1）の反応の熱化学方程式を記せ。

問2下線部（2）～⑥の括弧内の語句から，適切なものを選んで記せ。

問3（ ア ）にあてはまる式を記せ。

問4（イ）にあてはまる数値を，小数第 3 位を四捨五入し，有効数字 3 桁で記せ。気体定数は $R=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ とする。

問5（ ウ）～（ カ ）にあてはまる化学式を記せ。

問6（キ）にあてはまる数値を，小数第 1 位を四捨五入し， 2 桁の整数値 で記せ。ただし， $\log _{\mathrm{e}} 2=0.693$ とする。

第 3 問

周期表を眺めてみよう。例えば 1 族元素のうち，H を除く Li，Na，K などの元素は（ ア ）と呼ばれ，原子は最外殻に 1 個の（ イ ）を持ち， 1 価の陽イ オンになりやすい。
（ ア ）のうち Na を含む化合物に注目してみる。工業的に大量に生産され ている化合物 A は苛性ソーダと呼ばれ，潮解性があり水溶液は強いアルカリ性を示す。また化合物 A は，空気中の二酸化炭素を吸収して化合物Bに変化する。化合物 B は，工業的にはソルベー法（アンモニアソーダ法）でつくられる。2族元素も（ ア ）と似た性質を持つ。 2 族元素のうち， $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ などの元素 は（ ウ）と呼ばれ，特に性質が似通っている。

次に周期表の右側に視点を移し， 17 族元素に注目してみよう。 17 族には，互 いによく似た性質の $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ などの元素があり，（ エ ）と呼ばれる。原子は7個の（ イ ）を持ち，（ オ ）が大きいために1価の陰イオンになり やすい。単体として存在する場合は，原子同士が互いに（ イ ）を出しあって，
（ カ ）結合を形成した二原子分子となる。
$\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ の単体それぞれに水素を反応させた化合物は，無色で刺激臭を持つ。これらのうち最も沸点が高いのは，化合物 C である。（2）化合物Cは，ホタ ル石に濃硫酸を加えて加熱してつくることもできる。（3）また化合物Cの水溶液は，二酸化ケイ素を主成分とするガラスを溶かす。そのため化合物Cの水溶液は，ポ リエチレン製の容器に保存される。水素化物においては，この（ カ ）電子対 が Hより $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ の方に片寄って存在している。一般に，原子が（ カ ）電子対を引き寄せる強さは，元素によって異なる。この強さの尺度を電気陰性度 という。

問1（ ア ）～（ カ ）にあてはまる適切な語句を記せ。

問2 下線部（1）～（3）の反応を化学反応式で記せ。

問 $3 \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ を，電気陰性度が大きい順に並べよ。

問 $4 \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ の水素化物を，水溶液の酸性が強い順に並べよ。

問5 次の文章の下線部（4）～⑥の括弧内の語句から，適切なものを選んで記せ。

化合物Cの水溶液は，他の（ エ）の水素化物の水溶液と比べて ①（強い・弱い）酸性を示す。化合物Cを構成している（ エ）は，他 の（エ）と比べて電気陰性度が（大きい。小さい）にもかかわらず， イオンの大きさが（®）（大きい。小さい）ため，水素イオンを強く引き寄せ る。その結果，水溶液中の水素イオンの量が少なくなる。

問6 化合物Cは，他の（エ）の水素化物に比べ，極めて高い沸点を示す。 その理由を，分子同士の結合性に基づいて， 30 字以内で説明せよ。

以下は，芳香族化合物 $\mathrm{A} \sim \mathbf{I}$ に関する文章である。
（1）ニトロベンゼンを濃硝酸と濃硫酸の混合物中で加熱したところっニトロ基が更に 1 つ導入された A が生成した。一方，（2ニトロベンゼンに濃塩酸とスズを反応させると，Bが生成した。Bの水溶液に，水酸化ナトリウム水溶液を加えると， C が生成した。C に無水酢酸を反応させると，Dが生成した。一方，Bを塩酸に溶加して水で泠却し，これに，（3）亜硝酸ナトリウム水溶液を加えるとEが生じ， その後，反応溶液の温度を高くすると，Fに変化した。Fと希硝酸を混合した ところ，主生成物としてニトロ基が 1 つ導入された G が生成した。この反応の副生成物である構造異性体は，解熱鎮痛剤として知られるアセトアミノフェンの原料となる。

発泡ポリスチレンの原料であるスチレンは，ベンゼン環にビニル基が結合した構造を持ち，高分子材料の単量体として広く利用されている。スチレンへの水 の付加反応はマルコフニコフ則にしたがって進行し，Hが生成した。一方，スチ レンを過マンガン酸カリウムで酸化すると，弱い酸性を示すIが生成した。Iにエ タノールと濃硫酸を作用させると，良い香りのする化合物が生成した。

問1 図3にスチレンの構造式を示した。スチレンの炭素間の結合 ア～エ のう ち最も短いものを，記号で記せ。

図3 スチレンの構造式

問2 下線部（1）の反応に用いられた，ニトロベンゼンと硝酸，それぞれの窒素原子の酸化数を記せ。

問 3 化合物A，D，G，Hの構造式を記せ。

問4 下線部（2）の反応を化学反応式で記せ。

問5 下線部（3）～（5）の反応後，化合物E，F，Hの生成は，次に示すア～カの方法のいずれかで確認した。最も適切な確認方法を記号で記せ。

ア 化合物に，フェーリング液を加えて加熱すると，赤色の沈殿が生じる。
1 化合物に，塩化鉄（III）水溶液を加えると，紫色に呈色する。
ウ 化合物に，硫酸酸性二クロム酸カリウム水溶液を加えると，黒色の沈殿が生じる。

エ 化合物の塩基性水溶液に，ヨウ素を加えると，黄色の沈殿が生じる。
オ 化合物に，2－ナフトールの水酸化ナトリウム水溶液を加えると，橙赤色の沈殿が生じる。

カ 化合物に，ヨウ素ヨウ化カリウム水溶液を加えると，青紫色に呈色する。

問 6 化合物C，D，F，H，I のみを含む混合物のジエチルエーテル溶液から，
図 4 に示す（i）～（iii）の分離操作を順に行うことにより，各化合物 の分離を試みた。

図4 化合物 C，D，F，H，I の分離操作
（1）これらの操作で，主に 2 種類の芳香族化合物が含まれる層は，図 4 に示 した層ア～エのどれか，記号で記せ。
（2）（1）の層に含まれる 2 種類の芳香族化合物を記号で記せ。ただし，塩と して存在することもある。

第5問

問1

酢酸ビニルは，触媒存在下，化合物 A に酢酸が付加することで得られ，様々 な高分子，例えばビニロンの単量体として知られている。ビニロンは，桜田一郎によって開発され，岡山県の倉敷絹織株式会社（現 株式会社クラレ）との共同研究によって工業化された，初の国産合成繊維である。

ビニロンは 3 工程で合成される。まず，酢酸ビニルを付加重合させて重合体 Bを得る。この重合体 \mathbf{B} のけん化（加水分解）などにより，ポリビニルアルコ ールを合成する。このポリビニルアルコールを，酸性条件下でホルムアルデヒ ドと反応させると，（ ア ）化が進行し，ビニロンが得られる。ポリビニルア ルコールは水溶性であるが，ビニロンになると水に不溶になる。これは（ ア ）化によって，ビニロンの（ イ ）基の数が，ポリビニルアルコールよりも少 なくなるためである。また，ビニロンは，分子間で・（ ウ ）結合を形成する ので，強度や耐摩耗性に優れている。
（1）化合物 A と重合体 B の構造式を，下記の例にならって記せ。

（2）酢酸ビニルを加水分解したところ，酢酸と化合物 \mathbf{C} が得られた。化合物 \mathbf{C} の構造式を記せ。
（3）（ ア ）～（ ウ ）にあてはまる語句を記せ。

問 2

インフルエンザウイルスの増殖には，ウイルスの持つ幾つかの酵素が関わって いる。その一つであるシアリダーゼの働きを妨げる阻害剤は，インフルエンザの治療薬として有効である。

図5 オセルタミビル（化合物A）の構造式 （環上の添え字は位置番号を表す）

図5に，代表的な治療薬オセルタミビル（商品名タミフル，化合物A）の構造式を示す。体内に取り込まれた化合物 A は，分子内のエステル結合が加水分解を受け，化合物 B に変換される。化合物 B はアミノ酸としての性質を示すた め， $\mathrm{pH} 5 \sim 7$ の水溶液中では主に（ ア ）イオン， pH 1 付近では主に（ 1 ） イオンとして存在する。化合物Bは，その構造がシアリダーゼの本来の基質に似 ているため，基質の代わりに酵素の（ ウ）にはまり込む。その結果，化合物 Bは，シアリダーゼの触媒作用を妨げる。このとき，化合物 B の 3 位の置換基は，酵素を構成する（ エ ）性アミノ酸の側鎖と，イオン結合を形成している。
（1）図6において，化合物Aの点線で囲んだ部分 あ～え のうち，最も疎水性が高い部分を記号で記せ。

図 6
（2）pH 5～7 の水溶液中における化合物 B の構造式を，図 7 の点線で囲んだ部分 あ～えに適切な構造式を記すことで完成させよ。

図 7
（3）（ ア ）～（ エ ）にあてはまる語句を漢字で記せ。

